3.1016 \(\int \frac {1}{\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{5/2}} \, dx\)

Optimal. Leaf size=63 \[ \frac {2 \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1}}{3 x^{3/2}}+\frac {4 \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1}}{3 \sqrt {x}} \]

[Out]

2/3*(-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2)/x^(3/2)+4/3*(-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2)/x^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {272, 265} \[ \frac {2 \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1}}{3 x^{3/2}}+\frac {4 \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1}}{3 \sqrt {x}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*x^(5/2)),x]

[Out]

(2*Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]])/(3*x^(3/2)) + (4*Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]])/(3*Sqrt[x])

Rule 265

Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*
x)^(m + 1)*(a1 + b1*x^n)^(p + 1)*(a2 + b2*x^n)^(p + 1))/(a1*a2*c*(m + 1)), x] /; FreeQ[{a1, b1, a2, b2, c, m,
n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && EqQ[(m + 1)/(2*n) + p + 1, 0] && NeQ[m, -1]

Rule 272

Int[(x_)^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x^(m + 1)*(a
1 + b1*x^n)^(p + 1)*(a2 + b2*x^n)^(p + 1))/(a1*a2*(m + 1)), x] - Dist[(b1*b2*(m + 2*n*(p + 1) + 1))/(a1*a2*(m
+ 1)), Int[x^(m + 2*n)*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x], x] /; FreeQ[{a1, b1, a2, b2, m, n, p}, x] && EqQ[a
2*b1 + a1*b2, 0] && ILtQ[Simplify[(m + 1)/(2*n) + p + 1], 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{5/2}} \, dx &=\frac {2 \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}}}{3 x^{3/2}}+\frac {2}{3} \int \frac {1}{\sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2}} \, dx\\ &=\frac {2 \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}}}{3 x^{3/2}}+\frac {4 \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}}}{3 \sqrt {x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 36, normalized size = 0.57 \[ \frac {2 \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} (2 x+1)}{3 x^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*x^(5/2)),x]

[Out]

(2*Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*(1 + 2*x))/(3*x^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 34, normalized size = 0.54 \[ \frac {2 \, {\left ({\left (2 \, x + 1\right )} \sqrt {x} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} + 2 \, x^{2}\right )}}{3 \, x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(-1+x^(1/2))^(1/2)/(1+x^(1/2))^(1/2),x, algorithm="fricas")

[Out]

2/3*((2*x + 1)*sqrt(x)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1) + 2*x^2)/x^2

________________________________________________________________________________________

giac [A]  time = 0.22, size = 48, normalized size = 0.76 \[ \frac {128 \, {\left (3 \, {\left (\sqrt {\sqrt {x} + 1} - \sqrt {\sqrt {x} - 1}\right )}^{4} + 4\right )}}{3 \, {\left ({\left (\sqrt {\sqrt {x} + 1} - \sqrt {\sqrt {x} - 1}\right )}^{4} + 4\right )}^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(-1+x^(1/2))^(1/2)/(1+x^(1/2))^(1/2),x, algorithm="giac")

[Out]

128/3*(3*(sqrt(sqrt(x) + 1) - sqrt(sqrt(x) - 1))^4 + 4)/((sqrt(sqrt(x) + 1) - sqrt(sqrt(x) - 1))^4 + 4)^3

________________________________________________________________________________________

maple [A]  time = 0.06, size = 25, normalized size = 0.40 \[ \frac {2 \sqrt {\sqrt {x}-1}\, \sqrt {\sqrt {x}+1}\, \left (2 x +1\right )}{3 x^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(5/2)/(x^(1/2)-1)^(1/2)/(x^(1/2)+1)^(1/2),x)

[Out]

2/3*(x^(1/2)-1)^(1/2)*(x^(1/2)+1)^(1/2)*(2*x+1)/x^(3/2)

________________________________________________________________________________________

maxima [A]  time = 1.20, size = 21, normalized size = 0.33 \[ \frac {4 \, \sqrt {x - 1}}{3 \, \sqrt {x}} + \frac {2 \, \sqrt {x - 1}}{3 \, x^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(-1+x^(1/2))^(1/2)/(1+x^(1/2))^(1/2),x, algorithm="maxima")

[Out]

4/3*sqrt(x - 1)/sqrt(x) + 2/3*sqrt(x - 1)/x^(3/2)

________________________________________________________________________________________

mupad [B]  time = 5.50, size = 33, normalized size = 0.52 \[ \frac {\sqrt {\sqrt {x}-1}\,\left (\frac {4\,x}{3}+\frac {2\,\sqrt {x}}{3}+\frac {4\,x^{3/2}}{3}+\frac {2}{3}\right )}{x^{3/2}\,\sqrt {\sqrt {x}+1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(5/2)*(x^(1/2) - 1)^(1/2)*(x^(1/2) + 1)^(1/2)),x)

[Out]

((x^(1/2) - 1)^(1/2)*((4*x)/3 + (2*x^(1/2))/3 + (4*x^(3/2))/3 + 2/3))/(x^(3/2)*(x^(1/2) + 1)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x^{\frac {5}{2}} \sqrt {\sqrt {x} - 1} \sqrt {\sqrt {x} + 1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(5/2)/(-1+x**(1/2))**(1/2)/(1+x**(1/2))**(1/2),x)

[Out]

Integral(1/(x**(5/2)*sqrt(sqrt(x) - 1)*sqrt(sqrt(x) + 1)), x)

________________________________________________________________________________________